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Abstract
In the past decade, immune-based therapies such as monoclonal antibodies against tumor epitopes or immune checkpoint
inhibitors have become an integral part of contemporary cancer treatment in many entities. However, a fundamental prerequisite
for the success of such therapies is a sufficient trafficking of tumor-infiltrating lymphocytes into the tumor microenvironment.
This infiltration is facilitated by chemokines, a group of about 50 small proteins capable of chemotactically guiding leukocytes.
Proteolytic inactivation of chemokines leading to an impaired infiltration of immune effector cells appears to be an efficient
immune escape mechanism of solid cancers.

The CXCR3 and CX3CR1 chemokine receptor ligands CXCL9-11 and CX3CL1, respectively, are mainly responsible for the
tumor-suppressive lymphocytic infiltration into the tumor micromilieu. Their structure explains the biochemical basis of their
proteolytic cleavage, while in vivo data from mouse models and patient samples shed light on the corresponding processes in
cancer. The emerging roles of proteases, e.g., matrix metalloproteinases, cathepsins, and dipeptidyl peptidase 4, in chemokine
inactivation define new resistance mechanisms against immunotherapies and identify attractive new targets to enhance immune
intervention in cancer.
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1 Introduction

Although it was postulated more than 100 years ago that the
immune system can fight established solid tumors, only in the
past two decades substantial progress has been made towards
a better understanding of the interaction between the different
subtypes of immune cells with tumor cells and their environ-
ment [1, 2]. Starting point for many of these studies was the
clinical observation that the number of tumor-infiltrating lym-
phocytes (TILs) is a strong and robust prognostic marker
across various tumor entities, such as breast, colon, or ovarian
cancer [3–5]. Further studies have dissected the different sub-
populations of TILs delineating either their tumor-suppressive

(e.g., cytotoxic Tcells, natural killer cells) or tumor-promoting
functions (e.g., regulatory T cells) [6, 7]. Deciphering the im-
mune cell-tumor cell interactions has prompted the develop-
ment of new cancer immunotherapies, such as monoclonal
antibody therapy against tumor antigens, immune checkpoint
inhibition, adoptive T cell transfer, or various vaccination
strategies [8]. Especially in highly immunogenic tumors, these
immunotherapies have led to unprecedented improvements in
survival and quality of life of cancer patients. Examples in-
clude the HER2-directed therapies in breast cancer or the im-
mune checkpoint inhibitors in melanoma or non-small cell
lung cancer [9, 10]. Moreover, there is ample evidence that
classic chemotherapies also work via stimulation of an anti-
tumor immune response in addition to their cytotoxic effects
on the individual cancer cells [11].

However, a fundamental prerequisite for the success of all
of these approaches is sufficient trafficking of the respective
immune effector cells into the tumor microenvironment [12,
13]. This renders TILs or TIL subpopulations not only prog-
nostic, but also feasible predictive biomarkers for the response
to these therapies [7, 14]. In addition, it raises one of the most
urgent questions in contemporary cancer immuno-oncology:
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how can these immune cells be efficiently recruited into the
tumor? The ultimate goal is to transform a “cold” into a “hot”
tumor [15].

The recruitment of immune cells into solid tumors is me-
diated by chemokines, a family of about 50 small proteins
capable of chemotactically facilitating leukocyte migration
[16]. Different chemokines can either attract tumor-
suppressive or tumor-promoting leukocytes, and, thus, the
intratumoral chemokine milieu is a strong determinant of the
intratumoral immune milieu [17]. Besides their chemotactic
function, chemokines also participate in activation or inacti-
vation of immune cells.

Many chemokines can be posttranslationally modified by
proteolytic cleavage which either activates or destroys their
chemotactic function [18]. Expression of the corresponding
proteases may thus significantly influence the modulation of
the immune milieu and the anti-tumor immune response.
Therefore, proteolytic inactivation of tumor-suppressive
chemokines represents a potent immune escape mechanism
of solid tumors [19]. Conversely, inhibition of these proteases
might be an attractive adjuvant to immunotherapies, such as
immune checkpoint inhibitors, whose function depends on the
activity and presence of specialized chemokines [20].

In the following, the concept of chemokine cleavage as a
modulator of the anti-tumor response will be discussed. The
focus will be on the chemokines that are most notably known
for their ability to recruit tumor-suppressive lymphocytes such
as cytotoxic T cells (CTLs) or natural killer (NK) cells into
solid tumors (Fig. 1). These chemokines are the CXCR3

receptor ligands CXCL9, CXCL10, and CXCL11 as well as
the CX3CR1 ligand CX3CL1, also named fractalkine [17,
21].

2 Chemokines

Chemokines or chemotactic cytokines make up the largest
family of cytokines. With 48 members expressed in human
tissue, they represent a structurally and functionally related
group of low molecular weight proteins, which controls che-
motactic recruitment of specific lymphocyte subtypes in a
tissue- and time-dependent manner [22]. The distribution of
immune cells not only plays a crucial role in the innate and
adaptive immune response in case of inflammation or associ-
ated disease [23–27], but also supports tissue homeostasis [28]
and angiogenesis [29, 30]. According to their major function
chemokines are classified into two groups [25]: Homeostatic
chemokines are constitutively expressed in order to initiate a
proper immune response and to define the composition and
organization of tissue-resident, blood-derived cells such as
macrophages and dendritic cells [16]. On the contrary, inflam-
matory chemokines are mainly inducible and are strongly up-
regulated upon demand [31]. It is of note that this classifica-
tion is not strict as there are chemokines that can contribute to
both groups.

The conventional chemokine signaling is thought to be
transduced through a complementary receptor network
consisting of transmembrane G protein-coupled receptors

Lymphocyte-rich
Tumor-suppressive

Lymphocyte-poor
Tumor-promoting

a 

b 

Fig. 1 Inactivation of chemokine-
mediated lymphocyte infiltration
by proteolytic cleavage. A
Secretion of the chemokines
CXCL9, CXCL10, and CXCL11
as well as shedding of CX3CL1/
fractalkine leads to chemotactic
recruitment of tumor-suppressive
lymphocytes to the tumor site. B
Chemokine-targeted cleavage by
proteases, such as MMPs, ca-
thepsins, and DPPs, impairs lym-
phocytic infiltration, leading to
reduced amounts of immune cells
in the tumor microenvironment
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[32]. However, also receptor-independent modulation of sig-
naling has been proposed. Factors that can influence chemo-
kine signaling are non-canonical receptors such as the atypical
chemokine receptors 1-4, mRNA instability, alternative splic-
ing, or glycosaminoglycan (GAG) binding [33–35].
Furthermore, regulation is even more complex due to consid-
erable promiscuity between chemokines and their receptors,
i.e., several ligands may bind to the same receptor and vice
versa a single ligand can activate different receptors [16].
Moreover, chemokine receptors are involved in several sig-
naling cascades which can be differentially activated by either
distinct ligands or via oligomerization of the same ligand [36,
37].

The structure of chemokines is conserved across sub-
families, in most cases built around four conserved cyste-
ine residues, except the XC chemokines which lack two
of these four cysteines [38]. The organization of the first
cysteine residues in the N-terminal part of the chemokines
divides them into four different groups: CXC, CC, XC,
and CX3C, with X representing any amino acid [39]. The
cysteines form one or two disulfide bridges, which stabi-
lize a central three-stranded anti-parallel ß-sheet with a
rigid loop structure (Fig. 2). This central core is preceded
by a flexible unstructured N-terminus. Both the flexible
N-terminus and the following rigid N-loop, which often is
C-terminally limited by a 310-helix, within the globular
core are functional domains of the chemokine in terms
of receptor binding and activation. Originally, a two-site/
two-step model had been proposed, in which firstly the N-
terminus of the receptor interacts with the N-loop of the
chemokine and, subsequently, the unstructured N-
terminus of the chemokine can enter the binding pocket
of the receptor resulting in receptor activation and trans-
membrane signaling [40]. Recent results indicate that this
model may have to be extended to a three step model, in
which step 1 of the original model, binding of the chemo-
kine to the receptor, is divided into an initial low-affinity,
rather unspecific binding which is then followed by the
specific high-affinity binding of the chemokine to the re-
ceptor [41]. C-terminal of the chemokine core, an α-helix
is present which packs onto the ß-sheet structure. The
glycosaminoglycan (GAG) binding site of the chemokines
is located within the β-sheet and C-terminus [42].

3 The CXCR3 chemokine system

The CXC chemokines can be further divided according to the
presence or absence of a highly conserved Glu-Leu-Arg
(ELR) motif, which is shared by CXCL1-3 and CXCL5-8.
Among the chemokines that lack the ELR motif (CXCL4,
CXCL4L1, and CXCL9-14), most of them interact with the
CXCR3 receptor [43]. The CXCR3 receptor is a 368 amino

acid (aa) seven-transmembrane G protein coupled receptor
with three isoforms. The originally identified, canonical
CXCR3 receptor, named CXCR3-A, is bound by the ligands
CXCL9, CXCL10 and CXCL11 and, upon activation, pro-
motes chemotaxis, invasion, proliferation, and cell survival
[44]. The first identified splice variant of CXCR3 was called
CXCR3-B and interacts with CXCL4 and CXCL4L1 in addi-
tion to the classical ligands. This receptor isoform does not
trigger chemotaxis but instead growth suppression,
angiostasis, and apoptosis. The most recently discovered
CXCR3 isoform, CXCR3-alt, only accepts CXCL11 as ligand
[44, 45].

CXCR3 receptor expressing cells include, among others,
regulatory Tcells, CD4+ and CD8+ Tcells, dendritic cells, NK
cells, and NKT cells [21, 46]. CXCR3 ligand expression can
be detected in endothelial cells, keratinocytes, and fibroblasts.
Also, immune cells like T cells and monocytes are capable of
secreting those chemokines. Especially CXCL9 and CXCL11
are secreted by peripheral blood monocytes and macrophages
[22].

CXCL4 and CXCL4L1 are described as platelet-related
agonists, whereas CXCL9, CXCL10, and CXCL11 expres-
sion is strongly inducible by interferons (IFN). All of the
latter cytokines can be induced by IFN-γ, but CXCL11 is
the only one being also induced by IFN-α [47]. CXCL11
show the highest binding affinity towards CXCR3 follow-
ed by CXCL10 and CXCL9. Among these three
chemokines, CXCL9 shows the weakest activation upon
receptor binding [22]. Interestingly, competition with
CXCL11 receptor binding by CXCL9 or CXCL10 is al-
ways incomplete. Furthermore, CXCL11—in contrast to
CXCL10—does also bind to CXCR3, when the receptor
is uncoupled from G protein-dependent signaling [48].
Receptor activation by its three ligands also results in dif-
ferent effects. CXCL11 was described to be the most po-
tent inducer of receptor internalization, whereas CXCL9
and CXCL10 mainly induce chemotaxis as well as Ca2+

influx [49].
Besides induction of migration and Ca2+ influx, ligand/

receptor interaction can also lead to downstream phosphory-
lation of target proteins, e.g., transcription factors of the STAT
family. CXCL9 and CXCL10 lead to the phosphorylation of
STAT1, STAT4, and STAT5 and subsequently to an activation
of T-bet and RORyT, two differentiation regulators, resulting
in polarization of CD4-positive T cells towards the Th1 and
Th17 effector lineage. Contrariwise, CXCL11 binding in-
duces phosphorylation of STAT3 and STAT6, which leads to
a regulatory phenotype of CD4-positive T cells (Th2 or Tr1)
[50–52].

Thus, together with the varying susceptibility to post-
translational modification, differences concerning ligand-
receptor interaction and GAG binding, and the fact that
CXCL9, CXCL10, and CXCL11 display not completely
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overlapping functions, a complex regulatory network is
formed affecting diverse biological functions.

4 The CX3CR1/CX3CL1 chemokine system

Cells expressing the seven-transmembrane receptor CX3CR1
(355 aa) are monocytes, macrophages, NK cells, lympho-
cytes, and dendritic cells [53]. Its ligand, CX3CL1, also
named fractalkine, is the only member of the CX3C chemo-
kine family. It is expressed as a membrane-bound protein, but
is also found in soluble forms [54, 55]. The 317 aa long ex-
tracellular domain encompasses a stalk formed by mucin-like
domains with a chemokine domain on top. This N-terminal
extracellular part is followed by a transmembrane domain and
a short C-terminal cytoplasmic tail (34 aa). The soluble forms
of CX3CL1 carrying the mucin-like stalk [56] and possibly

also the cytokine domain only [57] provide chemotactic re-
cruitment of CX3CR1-positive cells. As a membrane-bound
protein, CX3CL1 provides adhesive capacity and helps to
stabilize the interaction between CX3CL1-expressing cells
and cells expressing the corresponding receptor CX3CR1,
respectively [58]. CX3CL1/CX3CR1-mediated adhesion can
be further enhanced by synergistic interaction with other ad-
hesive molecules like integrins [59]. Due to functions of
CX3CL1 as chemo-attractant and adhesion molecule, it plays
an important role in the process of recruiting cells from the
blood stream to the site of action in an integrin-independent
manner, e.g., the extravasation of CX3CR1-positive leuko-
cytes [60]. CX3CL1 expression is mainly found in endothelial
cells and neurons, but based on the involvement in inflamma-
tory processes it is also expressed in tissue showing rather
dense immune cell populations like the CNS, lung, cardiac
muscles, liver, small bowel, colon, and pancreas [61].

Fig. 2 Primary and tertiary structure of CXC chemokines. A Sequence
alignment of human CXCL9, CXCL10, and CXCL11. Secondary
structure elements are indicated by green arrows (ß-strands) and red
cylinders (α-helix and 310-helix). Cysteine residues are indicated in
yellow, whereby Cys9 forms a disulfide bridge with Cys36 and Cys11

with Cys52, respectively. The numbering is derived from CXCL9. B

Ribbon plot of model 1 from the NMR structure of CXCL11 (PDB
code 1RJT). A flexible unstructured N-terminus is followed by the N-
loop, a 310-helix (red), and the central three-stranded anti-parallel ß-sheet
(green), which is stabilized by two disulfide bridges, depicted as yellow
spheres. Near the C-terminus an α-helix (red) is present, which packs
onto the ß-sheet structure, followed by a flexible C-terminus
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5 The role of CXCR3 and CX3CR1 chemokines
in cancer

The role of the CXCR3 chemokine system in cancer bi-
ology may be a double-edged sword. On the one hand, the
CXCR3 chemokines, especially CXCL9 and CXCL10,
facilitate the recruitment of CXCR3-positive Th1, NK,
and NKT cells as well as cytotoxic T lymphocytes to the
tumor microenvironment, which trigger the development
of a tumor-suppressive immune milieu [46, 62, 63]. On
the other hand, tumor cells can exploit the CXCR3 recep-
tor to escape from the primary tumor and to metastasize to
niches with high CXCR3 ligand concentrations, e.g., to
the lymph nodes or to the lungs [64–69]. Moreover, all
three IFN-inducible CXCR3 ligands are anti-angiogenic
in vitro and in vivo, which may result in undersupplied,
stagnating tumors, but also in more aggressive tumor cells
with metastasizing potential [70, 71].

Raising the intratumoral concentration of intact and
functional CXCR3 chemokines, e.g., by inhibition of their
proteolytic inactivation, might thus kill two birds with one
stone: tumor-suppressive immune cells would be attracted
to the tumor site, and CXCR3-positive tumor cells would
be chemotactically prevented from escaping the primary
cancer. This idea is supported both by preclinical and
clinical findings. Overexpression of CXCR3 ligands in
murine cancer models of ovarian, breast, skin, or colon
cancer caused an enhanced Th1 and NK cell infiltration
and less metastatic spread [72–75]. Moreover, in human
cancers, overexpression of CXCL9 and CXCL10 is asso-
ciated with a higher number of tumor-infiltrating lympho-
cytes and improved survival, e.g., in breast, ovarian, co-
lon, lung, and several other cancers [67, 76–83]. Although
CXCR3 expression by tumor cells is associated with
worse prognosis in these cancers [67, 72, 84, 85] and
CXCR3 ligands may also attract tumor-promoting regula-
tory T cells [86], the net effect of CXCR3 chemokine
overexpression seems to favor tumor suppression. These
results are confirmed by large-panel gene expression anal-
yses of breast and ovarian cancer, in which CXCR3
chemokines represented the most upregulated genes in
the tumors of those patients exhibiting the best prognosis
[76, 87, 88].

However, CXCR3 chemokines do not only cause a
tumor-suppressive milieu per se, they also contribute to
the effect of multiple current cancer therapeutics. Immune
checkpoint inhibitors of the PD-1/PD-L1 axis rely on im-
mune cell attraction and on the intratumoral T cell activa-
tion by CXCR3 chemokines [20, 89–91]. Moreover, an
increase in CXCR3 chemokine serum concentrations un-
der therapy with checkpoint inhibitors is predictive for
therapy response [92]. CDK4/6 inhibitors, which have
emerged as a new cornerstone in the treatment of

advanced estrogen receptor positive breast cancer, recruit
cytotoxic T cells via induction of CXCR3 chemokines,
which is indispensable for their therapeutic effect in vivo
[93]. Inhibition of the poly[ADP-ribose] polymerase 1
(PARP1), which is now an established therapy in recur-
rent ovarian and metastatic BRCA-mutated breast cancer,
also induces CXCR3 chemokines via the STING (stimu-
lator of interferon genes) pathway in tumor cells, whereby
the subsequent attraction of immune cells is critical for
their function [94–99]. In all of these therapies, proteolyt-
ic inactivation of CXCR3 chemokines, thus, represents a
new resistance mechanism, which renders inhibitors of
CXCR3-chemokine cleaving proteases feasible adjuvants
to all of these therapies.

CX3CL1 is also capable of recruiting tumor-suppressive
immune cells that express the CX3CR1 receptor such as NK
cells and cytotoxic T lymphocytes (CTLs) [21]. However, as
described for the CXCR3 system, the CX3CR1 receptor is
also able to facilitate tumor cell migration and, thereby, me-
tastasis in CX3CL1-rich tissues, e.g. the bone or the brain
[100, 101]. Moreover, expression of the transmembrane form
of CX3CL1 in neurons, endothelial cells or peritoneal cells
promotes tumor cell adhesion and site-specific metastasis of
CX3CR1-expression prostate, ovarian, or pancreatic tumor
cells [102–106].

Preclinical studies confirm the tumor-suppressive effect of
CX3CL1 in several cancer models [107–112]. However, there
are also studies in support of tumor-promoting effects of the
CX3CL1-system: one study attributed a pro-metastatic func-
tion to the CX3CR1 receptor; however, the authors did not use
an immuno-competent mouse model and, thereby, excluded
the influence of immune modulatory effects [101]. Another
study shows that CX3CL1 promotes the development of tu-
mors, but not metastasis, in HER2 transgenic mice via
transactivation of the EGF pathway [113]. This direct effect
on tumor cells may relate to the fact that the tumor cells them-
selves express CX3CR1, whose activation directly triggers
proliferation and migration [100, 101]. So far, it has not been
satisfactorily clarified yet to what extent the two forms of
CX3CL1 (membrane-bound vs. soluble) contribute to these
different effects.

6 Posttranslational modification
of chemokines via proteolytic cleavage

6.1 Cleavage of CXCR3 ligands

The activity of CXCR3 ligands is regulated within a complex
and well-orchestrated network of different modulatory pro-
cesses. Besides the regulation on both the transcriptional and
translational level, modulation of chemokine activity by pro-
teases comes more and more into focus. Moreover, a
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regulatory loop has been proposed in breast cancer, in which
an increased expression of CXCL9 and/or CXCL10 leads to
induction of cathepsin B gene expression and, in conse-
quence cathepsin B protein levels, which then may reduce
chemokine activity [84]. Similar effects were reported for
the matrix metalloproteinases MMP-2 and MMP-9 in breast
cancer, gastric cancer, colon cancer, and multiple myeloma
[114–118]. Finally, a linear correlation of dipeptidyl pepti-
dase 4 (DPP4) and CXCL10 expression was observed in
ovarian cancer patients, suggesting a regulatory association
between chemokine substrate and the protease DPP4 [33].

6.1.1 MMPs: N- and C-terminal cleavage of CXCR3 ligands

Several members of the matrix metalloproteinase family car-
ry out N- and C-terminal cleavages of CXCR3 ligands
(Fig. 3). CXCL9 was reported to be C-terminally truncated
by MMP-9 cleaving after Lys90, Lys93, and Ser94 [119]. In
another study, in which several MMPs were analyzed, cleav-
age by MMP-7 and MMP-12 after Lys90 was observed as
well. Interestingly, under the conditions used in the latter
study, MMP-9 did not at all process CXCL9 [120].

For CXCL10, the cleavage sites for both MMP-8 and
MMP-9 were mapped to Glu71↓Arg and Ser73↓Lys74. In ad-
dition, MMP-9 cleaved CXCL10 after Val68 [119]. In another
study, MMP-9 was reported to cleave only at Ser73↓Lys74

coupled with an additional N-terminal cleavage after Ser4.
N-terminal cleavage was observed also for MMP-2, after
Arg5, together with C-terminal cleavage at Ser73↓Lys74

[121]. Finally, Cox and co-workers [120] reported that
MMP-12 cleaves CXCL10 C-terminally after Glu71 and
Ser73. Of note, in contrast to the study by van den Steen
and co-workers [119], cleavage of CXCL10 by MMP-8 and
MMP-9 was not observed, even with high enzyme-substrate
ratios. MMP-7 degraded CXCL10 without generating stable
intermediates.

For CXCL11, both N- and C-terminal processing by
MMPs was reported. MMP-12, MMP-8, and MMP-9
cleave after Phe4 and after Ser58. Only MMP-8 displays
an additional cleavage site at Leu63↓Ile64. Similar to
CXCL10, MMP-7 mainly degrades CXCL11. However,
a transient cleavage product could be detected by mass
spectrometry corresponding to CXCL111–58 [120]. N-
terminally truncated forms, CXCL115–73 and CXCL115–
58, have no detectable agonist activity in Ca2+ mobiliza-
tion assays and only a very low activity in chemotactic
migration assays [120] (Table 1).

6.1.2 Furin and carboxypeptidase: C-terminal truncation
of CXCL10 does not change chemokine activity

In primary human keratinocytes, besides the full length
form, a C-terminally truncated form of CXCL10, lacking

the last four amino acids, was detected [128]. Whereas a
broad range MMP inhibitor had no effect on processing,
an inhibitor directed against furin completely inhibited
processing. Subsequently, it was shown in vitro that furin
is able to cleave off two amino acids, which generates the
dibasic sequence Lys-Arg at the newly generated C-
terminus representing a high-affinity substrate for car-
boxypeptidase B. This truncated CXCL101–73 form re-
tains its chemotactic activity [128] (Table 1). Under con-
ditions, where full conversion of CXCL101–77 to
CXCL101–75 was obtained, CXCL9 was only partially
cleaved at five different positions. CXCL11 was no sub-
strate for furin (and CB) (Fig. 3).

a

b

c

Fig. 3 Reported cleavage sites in the CXC chemokines CXCL9,
CXCL10, and CXCL11. N-terminal and C-terminal amino acids se-
quences are depicted for CXCL9 A, CXCL10 B, and CXCL11 C.
Cleavage sites by DPPs and CD13 are indicated in red, by cathepsins in
green, by furin (in the presence or absence of CP-B) in orange, byMMP-9
in blue and by other MMPs in black
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6.1.3 Cathepsins: cleavage modulates chemokine activity

Different internal cleavage sites for chemokines of the
CXCR3 ligand family were mapped for some cysteine prote-
ases of the cathepsin protease family [122] (Fig. 3).
Interestingly, GAGs seem to stabilize cleavage intermediates
or even prevent (further) processing in the C-terminal region
of the cytokines. CXCL9 is internally cleaved by both cathep-
sin K and S near the N-terminus after Arg5 as well as in the C-
terminal part after Leu89 and Lys90, respectively. Cathepsin B
clips off the C-terminal two amino acids, whereas cathepsin L
rapidly degrades CXCL9. Cathepsin K, L, and S cleave
CXCL10 between Ser4 and Arg5. Furthermore, incubation of
CXCL10 with cathepsin B, L, and S leads to C-terminally
truncated forms lacking two, three and four amino acids, re-
spectively. In CXCL11, major cleavage sites were mapped
after Phe4 and Lys5 for cathepsin S. The latter cleavage site
was also allocated to both cathepsin K and L. Some of the
cathepsin-generated forms were further analyzed in cell bio-
logical assays in comparison with the respective chemotacti-
cally active full length cytokines: in Ca2+ mobilization assays,
cathepsin S-cleaved CXCL9 (CXCL96–89; CXCL96–90)
displayed considerably reduced chemokine activity, whereas
cathepsin S-cleaved CXCL10 (CXCL5–77) showed no activity

at all (Table 1). In migration assays, CXCL105–77 (generated
by incubation with either cathepsin S or L) and CXCL116–73
(generated by cathepsin L), respectively, were inactive as well
[128].

6.1.4 Dipeptidyl peptidases and aminopeptidase N (CD13):
N-terminal cleavage impairs chemotactic function

Other naturally occurring cleavage products result from N-
terminal cleavage events. In this respect, another protease
family has gained attention in recent years, namely the exo-
peptidase family of dipeptidyl peptidases (DPPs), which
cleave dipeptides from the N-terminus. Especially, DPP4
removes N-terminal amino acids from all classical CXCR3
ligands (Fig. 3) causing impaired chemotactic activity as well
as reduced Ca2+ influx [123, 126, 129]. Similarly, other mem-
bers of the DPP family process CXCR3 chemokines, e.g.,
DPP8 inactivates CXCL10 and CXCL11 [130]. In addition,
CXCL10 was suggested as a substrate for DPP9 [131]. Since
the cleavage pattern is similar to that of DPP4 and DPP8,
inactivation of the chemotactic ability of the cleavage product
seems plausible as well. Aminopeptidase N (CD13), which
removes single N-terminal residues, generates a truncated

Table 1 Characteristics of
truncated chemokine forms Truncated

form
Effects on chemokine-mediated processes Reference

CXCL9
(1–103)

6–90 Reduced induction of Ca2+ influx [122]

6–89 Reduced induction of Ca2+ influx [122]

3–103 Lack of chemotactic activity, reduced induction of Ca2+ influx, full
angiostatic activity

[123]

1-78a Reduced induction of Ca2+ influx [124]

CXCL10
(1–77)

5–77 Lack of chemotactic activity, no induction of Ca2+ influx [122]

3–77 Reduced CXCR3 binding, reduced chemotactic activity, no
induction of Ca2+ influx, full angiostatic activity, CXCR3
antagonistb

[123]

1–73 Full chemotactic activity [125]

CXCL11
(1–73)

5–73 Reduced chemotactic activity, no induction of Ca2+ influx, CXCR3
antagonistc

[120]

5–58 Lack of chemotactic activity, no induction of Ca2+ influx, no heparin
binding

[120]

3–73 Reduced CXCR3 binding, reduced chemotactic activity, no
induction of Ca2+ influx, CXCR3 antagonistd

[123,
126]

6–73 Lack of chemotactic activity [122]

mCX3CL1
(1–76)

5-78e Lack of chemotactic activity, no induction of Ca2+ influx, CX3CR1
antagonist

[127]

a CXCL91–78 corresponds to a truncated version of recombinantly expressed human CXCL91–103 in Chinese
hamster ovary cells generated by (an) unknown protease(s)
b CXCL103–77 inhibits CXCL101–77-mediated chemotaxis
c CXCL115–73 inhibits CXCL111–73-induced Ca

2+ influx and CXCL111–73-mediated chemotaxis
d CXCL113–73 inhibits CXCL111–73, but not CXCL101–77-mediated chemotaxis
e The chemokine domain of CXCL11/fractalkine (aa 1–76 or its truncated form 5–76) was expressed as recom-
binant protein with a two amino acid extension at the C-terminus
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version of CXCL11 devoid of any chemotactic activity or
binding to the CXCR3 receptor [132] (Table 1).

6.2 Cleavage of CX3CL1

For CX3CL1, proteolytic cleavages play a major role in re-
vealing the full potential function of the protein. Proteolytic
cleavages convert the membrane-bound form to the soluble
form, especially the metalloproteases ADAM17 and
ADAM10 [133–135]. Activity of these ADAMs releases a
soluble form of CX3CL1 encompassing the chemokine do-
main and large parts of the mucin-like stalk (Fig. 4). Since
addition of ADAM10 and/or ADAM17 inhibitors did not
completely prevent the release of soluble CX3CL1, other pro-
teases were proposed to be involved in the shedding process
as well [136]. In an unbiased mass spectrometry-based sub-
strate screen for MMP-2, CX3CL1 was identified as a sub-
strate for this matrix metalloproteinase. Cleavage by MMP-2
results in the release of a soluble form of CX3CL1 lacking the

mucin-like stalk [57]. The MMP-mediated release of
CX3CL1 peptides was validated in vitro by the addition of
TIMP2 and TIMP3, natural inhibitors of MMP-2 and other
MMPs [137]. MMP-2 also generates an N-terminally truncat-
ed form of CX3CL1 lacking four amino acids [57].
Recombinantly expressed CX3CL15–78 did neither induce
Ca2+ influx nor displayed any chemotactic activity.
Furthermore, competitive chemotaxis assays revealed
CX3CL15–78 as a CX3CR1 antagonist [127] (Table 1).

Another sheddase for CX3CL1 was found in the context of
microglia signaling, where cathepsin S was shown to be a
major regulator of generation of soluble CX3CL1 [138].
CX3CL1 may also be targeted by MMP-9: in a non-obese
diabetic (NOD) mouse model, Wildenberg and co-workers
[139] detected 17 kDa and 19 kDa cleavage products of
CX3CL1 in the salivary gland, which was accompanied by
an increased gelatinase andα-secretase activity. In vitro cleav-
age assays excluded ADAM10 and 17 as well as MMP-2 as
responsible enzymes and, thus, pointed to MMP-9 as one of

a

b

Fig. 4 Cleavage of CX3CL1/fractalkine by proteases. A Alignment of
the cytokine domain of human and murine CX3CL1. Secondary structure
elements are indicated by green arrows (ß-strands) and red cylinders (α-
helix and 310-helix). The cleavage sites of MMP-2 (black arrows) were
determined via cleavage of the murine recombinant ectodomain of
CX3CL1 with human MMP-2. B Schematic representation of
CX3CL1. The N-terminally located cytokine domain (aa 1–76) is linked
to the transmembrane domain (plus short cytoplasmic tail) via a mucin-

like stalk. N-terminal and C-terminal amino acid sequences of the cyto-
kine domain of murine CX3CL1 are depicted. The cytokine domain can
be shedded either together with the mucin-like domains by cathepsin S
(green) as well as ADAM10 and ADAM17 (violet) or as isolated domain
by MMP-2 (black; Ala71↓Leu72). The proteolytic cleavage by MMP-2
near the N-terminus (black; Gly4↓et5 results in inactivation of the
cytokine

Cancer Metastasis Rev



the responsible proteases for this organ-specific cleavage
in vivo. It should be noted, however, that in vitro MMP-9
led to the degradation of the target protein and its inactivation
[139].

All these data suggest that proteases have a strong impact
on CX3CL1 release suggesting involvement in the modula-
tion of the immune response. Nevertheless, until now it is not
fully understood, whether the membrane-bound or soluble
form of CX3CL1 has a more regulatory impact.

6.3 In vivo relevance of proteolytic chemokine
processing

While cleavage and its functional consequences of CXCR3
and CX3CR1 chemokines by proteases have been rather well
characterized on the biochemical level, there is hardly any
in vivo data on the impact of these cleavage processes on
tumor-immune interactions.

Only indirect data exists showing that protease expression
is associated with unfavorable prognosis and less lymphocytic
tumor infiltrates in certain cancers. Regarding matrix metallo-
proteinases, a recent study showed that inhibition of MMP-9
by a monoclonal antibody in an immuno-competent model of
HER2-positive breast cancer increased tumor-suppressive T
cell infiltration and CXCR3 chemokine expression. Whether
MMP-9-antagonism increases T cell trafficking due to
CXCR3 chemokine cleavage in vivo was, however, not dem-
onstrated [140].

Most detailed in vivo data are available for the DPP4-
mediated cleavage of CXCR3 chemokines. In syngeneic
models of melanoma and colorectal cancer (B16F10 and
CT26 models, respectively), inhibition of DPP4 by
sitagliptin or DPP4 knockout led to enhanced T cell infil-
tration, impaired tumor growth and less metastatic spread
[19]. This effect was abrogated in Cxcr3−/− mice and de-
pendent on N-terminal CXCL10 truncation. Moreover,
immune checkpoint inhibitor therapy was improved by
DPP4 inhibition with sitagliptin [19]. These data were
confirmed in both a xenograft and a fully immuno-
competent model of hepatocellular carcinoma, in which
DPP4 inhibition also impaired tumor growth by enhanc-
ing the CXCR3-mediated NK and T cell infiltration [141].
However, in another HCC model as well as in a triple-
negative breast cancer model, the tumor-suppressive ef-
fect of sitagliptin could not be traced back to the
CXCR3 chemokine cleavage, but was instead dependent
on a CCL11-mediated higher eosinophilic infiltration
[142]. Seemingly, the underlying mechanisms of DPP4-
mediated anti-tumor immune modulation could be differ-
ent across tumor types (and maybe across mouse models).
In human ovarian cancer, the existence of DPP4-mediated
CXCL10 cleavage products was demonstrated, suggesting

a relevant role for these mechanisms also in patients
[143].

7 Conclusion

Taken together, CXCR3 and CX3CR1 chemokines are part of
a complex regulatory network which orchestrates a broad va-
riety of physiologic functions that can modulate the anti-
tumoral immune response. On the one hand, chemokines help
to shape the tumor-microenvironment by regulating the
amount and type of infiltrating lymphocytes. On the other
hand, they are enhancing cell biological processes such as
proliferation, invasion, and angiogenesis and, thereby, pro-
mote tumor aggressiveness and metastatic potential.
Posttranslational modifications of these chemokines by tumor
cells, such as proteolytic cleavage, can exert a strong regula-
tory impact resulting in a shift towards a tumor-promoting
environment. Proteolytic cleavage of the tumor-suppressive
CXCR3 and CX3CR1 chemokines impairs their functions
and, on top of this, in feedback loops, the chemokines may
even lead to increased expression of the proteases targeting
themselves. Thus, we suggest that cleavage of the ligands of
the CXCR3 and CX3CR1 chemokine systems represents a
potent immune escape mechanism in cancer. Deeper knowl-
edge of the mechanisms behind this also provides a panel of
interesting novel target structures to support existing therapies
or develop new ones.
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